

ENERGY CONSERVATION IN STEAM SYSTEMS

CONFEDERATION OF INDIAN INDUSTRY CII – GODREJ GREEN BUSINESS CENTRE HYDERABAD, INDIA

Efficiency in Steam Systems can be Viewed

***Steam System working is critical**

- **Process Importance**
- **Cost Importance**
- ***EE Approach**
 - **Generation**
 - **Distribution**
 - **□**Usage

Importance of Steam

- Steam as heat transfer medium
 - High specific heat capacity
 - High Latent heat capacity
 - **D** Cheap and easily available
 - Non toxic and inert
 - High heat transfer coefficient

Heat Energy Available in Steam

Heat Available in steam is in two forms

Energy Audit in Steam Systems

***Boiler Performance**

- ***Steam Distribution Scheme**
- ***Study of Steam Traps**
- ***Steam Leakages**
- *****Flash steam utilization
- *Condensate Recovery
- Installation of Air vents
- Study of Insulation

BOILER IMPROVEMENT OPPORTUNITIES

Typical Boiler System

Classification of boilers

General classification,
Fire in tube
Water in tube
Packaged Boilers

Boiler Efficiency

 Percentage of heat input that is effectively utilized in producing steam

- Direct Method Input Output Method
- Indirect Method Heat Loss Method

Indirect/ Heat Loss Method

ENERGY SAVING OPPORTUNITIES IN BOILERS

Energy saving Opportunities

- Stack temperature
- Feed water preheating
- Combustion air preheating
- Excess air control
- Radiation Losses
- Blow down Losses
- Condensate Recovery

Avoid excess supply of air to boilers

* O₂ levels at outlet of boilers on a higher side Heat loss due to excess air – dry flue gas losses Higher power consumption of FD fan **D** Online O₂ analyzer installed to monitor proper O₂ levels VFD available on ID and FD fan Operate FD fan with O₂ level as feedback ID fan to be operated with furnace draft

Reduce radiation losses in the boiler

Thermo graphic study done to evaluate locations of high radiation,

Area (m2)	Location	Temp (deg C)	Ambient Temperature (deg C)	kCal
Unit 2				
20	APH Losses	240	40	49998.71
12	Manholes (12 no's)	260	40	36028.74
40	Boiler Corners	230	40	90790.8
3	Extended Back pass Bellow	350	40	18215.47
Unit 1				
1	Spiral Water Wall (42m)	320	40	4887.41
Total Heat Loss				

Reduce radiation losses in the boiler

BELLOW NEAR APH

APH

Reduce radiation losses in the boiler

MANHOLES

FD BELLOW APH

Enhance combustion efficiency by increasing excess air

- O_2 % at Eco outlet 3.5%
 - **D** CO content is 400 ppm at Eco out
 - Heat loss due to higher CO content is 0.58% which is high
- The quantity of air for combustion was increased,
 CO levels reduced to 100 ppm at Eco out
 Boiler efficiency improved by 0.4%
 14 kg/h of coal saving

STEAM DISTRIBUTION SYSTEM

Steam Distribution System

Major Factors affecting Steam Distribution System

- Maximum safe working pressure of boiler
- Minimum pressure required for user
 - Frictional pressure loss in the piping
 - Condensation within pipe work

Compensation to be kept for both

Senerate and Distribute Steam at high pressure

D Steam Quality – dry saturated always

D Smaller sized steam mains , resulting in low capital costs

Steam Distribution System Cont..

***Use Steam at lower Pressure**

- **D** Lower Pressure results higher latent heat
- **D** Leads to higher dryness at user

Features of Efficient Steam Piping

Shortest possible distance

- *Proper draining of condensate (drain points at every 30-45 meters)
- Proper slope (not less than 125 mm for 30 meters)
- Stanch Lines to users (should be connected at top)
- Proper Supports to avoid sagging
- Proper expansion loops
- Minimum pipe redundancy

Steam Traps

Selection of steam Trap

Application	Feature	Suitable trap
Steam mains	- Open to atmosphere, small	Thermodynamic type
	capacity	
	- Frequent change in	
	pressure	
	- Low pressure - high	
	pressure	
Equipment	 Large capacity 	Mechanical trap, Bucket,
Reboiler	 Variation in pressure and 	Inverted bucket, float
Heater	temperature is undesirable	
• Dryer	- Efficiency of the	
• Heat exchanger etc.	equipment is a problem	
Tracer line	- Reliability with no over heating	Thermodynamic &
 Instrumentation 		Bimetallic

Trap Orientation: Needs **Vertical or Horizontal?** column/wall/pillar Advantage Disadvantage Can be firmly fixed to ground Occupies Requires larger footprint little space Installed Vertically Horizontally

Insulation in Steam Systems

- Insulation critical for efficient performance of steam systems
- Required for better control of process parameters
- Typical Insulation material
 - **Glass Wool**
 - **D** Calcium Silicate
 - **D** Cladding Sheets
- Poor Insulation leads to higher heat loss

Heat Losses at different Surface Temperatures

Difference in temperature between ambient & surface	Heat loss
(°C)	(kCal/m ² /h)
50	500
100	1350
200	3790
400	13640

Economic thickness of Insulation

- Cost of Increase in
 Thickness of insulation
 should justify fuel savings
- Beyond certain value further increase in insulation is not economical

The *Economic Thickness* of insulation is that thickness at which the costs of heat loss, plus the installed cost is at minimum.

Where : I = Cost of Insulation H = Cost Of Heat Loss I+H= Total Cost M = Economic Thickness MC= Minimum Cost

Concept of "Economic Thickness of Insulation"

Insulation Thickness

© Confederation of Indian Industry

Insulation in Steam Systems – Best Practices

Proper Insulation at Bends

Proper Insulation at Steam Lines

Proper Insulation at Valves

Proper Insulation at Steam Distribution

Steam Leakages

Through Instrumentation

Condensate Recovery

- Condensate is the liquid formed when steam passes from vapour to the liquid state
- With Condensate recovery Sensible heat can be recovered from the water (condensate)

Example of Steam Heating Process

Typical Condensate Recovery System

Advantages of Condensate Recovery

- Reduced fuel cost Sensible heat accounts for 30% of heat content of steam
- *****Reduced water consumption
- ***** Reduced Effluent Discharge
- Improves Boiler output
- ***** Boiler Feed water quality

Tips for maintaining EE in Boilers

*Keep records of water consumption and fuel consumption

- Calculation Fuel Consumption/kg of Steam
- Frequently conduct insulation and leakage survey
 - Temperature
 - Leakage

Check of O₂% at Stack and flue gas temperature
Foremost importance to safety

THANK YOU....

